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We present a theory for the effective nondegenerate third-order nonlinear optical susceptibility(NDTNOS)
of composite media in which the graded metallic particles with weak nonlinearity and the linear dielectric
grains are randomly distributed. In combination with an effective medium approximation, the recently estab-
lished nonlinear differential effective dipole approximation(NDEDA), which is valid for the degenerate third-
order optical nonlinearity of the composites in the dilute limit, is generalized to deal with the effective
NDTNOS of graded composites of high-volume fractions. Numerical results show that for high-volume frac-
tions, the presence of gradation makes the effective NDTNOS enhanced, but the linear optical absorption
reduced, thus, yielding an attractive figure of merit. In addition, by using NDEDA and Maxwell-Garnett
approximation, we study the effective NDTNOS of the graded composite media with the Hashin-Shtrikman
microgeometry. The nondegenerate optical nonlinearity enhancement is found to be sensitive to the composite
topology.
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Nonlinear optical properties of granular composite mate-
rials have been the subject of extensive research because of
their potential applications in physics and engineering[1–3].
A large optical nonlinearity enhancement was experimentally
observed in a broad variety of artificial materials, such as the
multilayer of titanium dioxide and conjugated polymer[4],
and the metal-dielectric nanocomposite[5]. On the other
hand, a number of theoretical works have been devoted to
achieving a large enhancement of nonlinear optical suscepti-
bilities by taking into account the local-field effect and the
percolation effect[6,7].

Recently, graded materials have attracted much interest in
various engineering applications[8]. For treating the effec-
tive dielectric response of composites containing graded par-
ticles, we proposed a nonlinear differential effective dipole
approximation(NDEDA) [9], valid in the dilute limit.

Generally, the effective optical nonlinear susceptibility re-
ported in previous works is a degenerate component, namely,
xesvd;xesv :−v ,v ,vd. However, in the nondegenerate
four-wave mixing, one should impose the two pump fields
with v1 of high intensity to generate the desired nonlinearity,
while the probe field atv2 of lower intensity is measured.
For instance, the differential absorption spectra[10] are re-
lated to the effective nondegenerate third-order nonlinear op-
tical susceptibility(NDTNOS) xesv2d;xesv2:−v1,v1,v2d
defined as

xesv2duE0,v1
u2E0,v2

2 =
1

V
E xiuEloc,v1

u2Eloc,v2

2 dV,

wherexi stands for the NDTNOS of the componenti, and
Eloc,v represents the linear local field when the external field

of v sE0,vd is applied. This susceptibility is qualitatively dif-
ferent from the degenerate one in that it intrinsically involves
two different frequencies. In this Brief Report, we shall gen-
eralize the NDEDA[9], which is valid for the degenerate
third-order nonlinear optical susceptibility of graded com-
posites in the dilute limit, to treat the effective NDTNOS of
composite media containing spherical graded particles with
high volume factions. For this purpose, the Bruggeman ef-
fective medium approximation(EMA) will be adopted. Fur-
thermore, we also apply the NDEDA to study the effective
NDTNOS of the composite with H-S microstructure.

Let us consider a two-phase composite material in which
the graded metallic particles with volume fractionp, and the
dielectric grains of the dielectric constante2svd with 1−p are
randomly distributed. In this system, the graded particles
with the same radiusa are assumed to possess the weakly
nonlinear displacementsDd-field sEd relation of the form,
D1,v2

=esr ,v2dE1,v2
+xsr ,v2duE1,v1

u2E1,v2
, whereesr ,vd and

xsr ,vd, respectively, stand for the linear dielectric constant
and the NDTNOS of graded particles at the frequencyv.
It is worth noting that bothesr ,vd and xsr ,vd are radial
functions.

Within the quasistatic approximation, the whole inhomo-
geneous composite behaves as an effective homogeneous
one with the effective linear dielectric constanteesv2d and
NDTNOS xesv2d, given by

kDv2
l = eesv2dE0,v2

+ xesv2duE0,v1
u2E0,v2

, s1d

wherek¯l denotes the spatial average.
To obtaineesvd andxesvd, we consider the composites in

which both the nonlinear graded spherical inclusions and the
dielectric grains are embedded in the host medium with un-
determined linear dielectric constanteesvd. The equivalent
dielectric constantēsr ,vd of the graded particles at radiusr
receives the form[9]
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dēsr,vd
dr

=
fesr,vd − ēsr,vdgfēsr,vd + 2esr,vdg

resr,vd
. s2d

Then, the effective linear dielectric constanteesvd of the
whole system is self-consistently given by the Bruggeman
EMA:

p
ēsa,vd − eesvd

ēsa,vd + 2eesvd
+ s1 − pd

e2svd − eesvd
e2svd + 2eesvd

= 0. s3d

For the equivalent NDTNOSx̄sr ,v2d of the graded particles,
we have

dx̄sr,v2d
dr

= x̄sr,v2dFo
n=1

2
ndēsr,vnd/dr

ēsr,vnd + 2eesvnd

+ S dēsr,v1d/dr

ēsr,v1d + 2eesv1d
D*G +

x̄sr,v2d
r

fysr,v1d

+ y * sr,v1d + 2ysr,v2d − 3g +
3xsr,v2dG

5r
, s4d

where

ysvd = 2
fesr,vd − eesvdgfēsr,vd − esr,vdg

esr,vdfēsr,vd + 2eesvdg
,

and

G = 5uBsv1du2fB2sv2d + 2C2sv2dg

+ 4B * sv1dCsv1dCsv2df2Bsv2d + Csv2dg

+ 8Bsv2dC * sv1dCsv2dfBsv1d + Csv1dg

+ 4C * sv1dC2sv2dfBsv1d + 6Csv1dg + 10B2sv2duCsv1du2,

with BsvdfCsvdg=fēsr ,vd±2esr ,vdg / f3esr ,vdg.
Next, we resort to the spectral represent theory[11] and

adopt the decoupling approximation to investigate the effec-
tive NDTNOS of the composites. That is,

xesv2d = px̄sa,v2dE
0

1 U ssv1d
ssv1d − x

U2

3msxddx ·E
0

1 S ssv2d
ssv2d − x

D2

msxddx, s5d

where ssvd;eesvd / feesvd− ēsvdg and msxd is the spectral
density function given in Ref.[11]. Here we mention that the
decoupling procedure will be accurate when the local field is
nearly uniform and less accurate when the field fluctuations
are large, as in a random composite near the percolation
threshold.

As a model system, we consider the graded spherical par-
ticles to be a Drude-like metal, which has a linear dielectric
constant of the form[9]

esr,vd = 1 −
vp

2srd
vsv + igd

, r ø a, s6d

where g is the relaxation rate andvpsrd represents the
plasma-frequency gradation profile. For numerical calcula-
tions, vpsrd is assumed to have the formvpsrd=vps1
−kvr /ad [9]. Furthermore, to highlight the composite effect,
we setxsr ,vd;x1 to be independent of bothr andv.

Figure 1 displays the linear optical absorption coefficient
a,v2/vp ImfÎeesv2dg versus the normalized frequency
v2/vp, for v1=vp/Î1+2e2. Due to the electromagnetic in-
teraction between the individual grains, there are surface
plasmon resonant bands in the whole frequency region 0
,v,vp. Moreover, at high-volume fraction, which is larger
than the percolation thresholdpc=1/3, a Drude peak ap-
pears, characterized by a fast increase of linear absorption
nearv,0. To one’s interest, when a plasma-frequency gra-
dation profile is taken into account, the surface resonant
bands are split into two parts: one is due to randomness; the
other (within the high-frequency region) results from the
plasmon-frequency gradation. In particular, at high-volume
fraction, the presence of gradation leads to a significant de-
crease in the magnitude of the optical absorption band.

In Fig. 2, we study the enhancement of the effective NDT-
NOS uxesv2d /x1u. Owing to gradation, the resonant bands
due to randomness are caused to be redshifted, while the
other enhancement bands are induced to appear in the high-
frequency region. The latter enhancement can be well under-
stood if we regard the graded particles as a limit of multi-
shells [12]. Furthermore, for high-volume fraction, the
enhancement of the effective NDTNOS for graded compos-
ites is larger than the one for the nongraded composites.
Therefore, for highp, by choosing an appropriate gradation
profile, it is possible to achieve a more prominent enhance-
ment of the effective NDTNOS accompanied with a small
linear optical absorption.

FIG. 1. The linear optical absorptionv2 ImfÎeesv2dg /vp vs
v2/vp, for variouskv andp.
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For practical applications, the most useful parameter is
the figure of merit(FOM), defined asuxesv2d /x1u /a (see Fig.
3). At large volume fraction, the FOM for the graded com-
posites is apparently larger than the one for the nongraded
composites. This could not be observed in our previous work
[9] where the NDEDA is valid in the dilute limit.

In what follows, we shall derive the NDEDA for the
Hashin-Shtrikman(HS) microgeometry. Now, we have a
two-phase composite consisting of entirely coated spheres
with a nonlinear graded core of dielectric propertiesesr ,vd
andxsr ,vd and a concentric shell ofe2svd. For this kind of
microstructure, the equivalent linear dielectric constant
ēsr ,vd of graded inclusions can still be described by Eq.(2).
However, because the nonlinear graded particles(cores) are
always surrounded by the host medium of the dielectric con-
stante2svd, the corresponding equivalent NDTNOS can be
obtained from Eq.(4) with eesvd being replaced bye2svd.

Onceēsr ,vd and x̄sr ,vd are calculated, the effective lin-
ear dielectric constant of the graded composites with the HS
microgeometry is described by Maxwell-Garnett approxima-
tion (MGA),

eesv2d
e2sv2d

= 1 +
3pfēsa,v2d − e2svdg

s1 − pdēsa,v2d + s2 + pde2sv2d
. s7d

The effective NDTNOS for H-S microgeometry is given by

xesv2d = px̄sa,v2dU 3e2sv1d
s1 − pdēsa,v1d + s2 + pde2sv1d

U2

·S 3e2sv2d
s1 − pdēsa,v2d + s2 + pde2sv2d

D2

. s8d

In Fig. 4, we display the linear absorptiona
,v2/vp ImfÎeesv2dg and nonlinear absorption b
,uImfxesv2d /x1gu as a function ofp. Both the linear and
nonlinear absorption are in direct proportion top at low-
volume fraction, predicted from either the NDEDA accom-
panied with the EMA or the NDEDA accompanied with the
MGA. Then, the linear absorption deviates from the linear
dependence onp and undergoes a sharp increase at a certain
high-volume fraction, dependent on the gradientkv. At small
gradients, after the linear dependence, the nonlinear absorp-
tion for the NDEDA accompanied with the MGA goes
through a maximum and then decreases monotonically with
p. For large gradientkv=0.4, a sharp valley appears atp
<0.44, and Imfxesv2d /x1g crossovers from the negative
value to positive one. However, for the NDEDA accompa-
nied with the EMA, broad nonlinear absorption bands are
observed again. Moreover, for large gradientkv=0.4, a linear
enhancement of nonlinear absorption is found for 0,p,3
310−2. At volume fraction 3310−2,p,0.112, the degree
of enhancement is higher. After that, the monotonic decrease
of nonlinear absorption withp comes to appear due to the
formation of large clusters. All these properties are in quali-
tative agreement with the experiment report[10]. In order to
compare with experiment results quantitatively, we should
apply the Shalaev-Sarychev theory[1,2] by taking into ac-
count the mutual interaction effects exactly. On the other
hand, because graded films can be fabricated easily, we sug-
gest experiments be done to examine the gradation effect in
the graded metallic films[13].

In conclusion, we have developed the NDEDA accompa-

FIG. 2. Same as Fig. 1, but for the effective NDTNOS
uxesv2d /x1u.

FIG. 3. Same as Fig. 1, but for the FOM.

FIG. 4. The nonlinear optical absorption as a function ofp for
variouskv. The results of both the NDEDA accompanied with the
MGA (left panels) and the EMA(right panels) are shown.
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nied with the EMA for calculating the NDTNOS of a graded
composite in which the nonlinear graded metallic particles
and the linear dielectric grains are randomly distributed. At
high-volume fraction, the presence of gradation was found to
be helpful to achieve a large enhancement of the NDTNOS
and FOM. The effect of composite topology has also been
studied by using the NDEDA accompanied with the MGA.
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